
“Now it is our turn to study statistical mechanics.

Perhaps it will be wise to approach the subject cautiously.”

D. L. Goodstein, States of Matter

3
A fully-integrated lattice Boltzmann method

for fluid–structure interaction

3.1 Introduction

Simulation has become an indispensable tool for studying fluid–structure interaction (FSI) problems.

We have full autonomy in setting the physical parameters, and thus we can gain more information from

simulations that are experimentally hard to measure or theoretical difficult to approximate. All simula-

tions (everything) could potentially be done on a single or multiple computers (everywhere) in a parallel

fashion (all at once). A generalizable numerical method seems to be the key to unlocking the potential

This chapter is reformatted from Y. Sun and C. H. Rycroft, A fully-integrated lattice Boltzmann method for fluid–
structure interaction, under review at Journal of Computational Physics (2024). (arXiv:2402.12696)

48

https://arxiv.org/abs/2402.12696

of simulations in studying FSI problems. However, as we have introduced in Chapter 1, developing FSI

methods is a nontrivial task. The main challenge stems from the intrinsic dichotomy in the preferred

simulation approach between solids and fluids: Because solid stress comes from strain, while fluid stress

comes from strain rate, solid simulations often use Lagrangian approaches [16–19], but Eulerian meth-

ods are favored by fluid simulations [20–22]. State-of-the-art FSI methods can be loosely categorized into

four types: mesh-free, Lagrangian, Eulerian–Lagrangian, and Eulerian (Fig. 1.1).

The basis of a fully Eulerian FSI method is to represent solids in an Eulerian framework [79–82]. One

recent example is the reference map technique (RMT) [93, 95, 96], which uses the reference map field—

an Eulerian mapping from the deformed state to the undeformed state of the solid—to describe finite-

strain large solid deformation in the Eulerian framework. For FSI simulations, the RMT uses the level set

field [77, 78, 195] to describe solid–fluid interfaces of multiple solid objects. It can be coupled with any

Eulerian numerical methods for the fluid update. Jain et al. [97] developed a conservative implementation

using the finite volume method. Rycroft et al. later introduced the IncRMT [98] for incompressible FSI

simulations using Chorin’s projection method [20, 196], which is further extended to three dimensions

(RMT3D) [99] and mixtures of soft and rigid solids [100]. However, the authors reported [98] that up

to two-thirds of the total simulation time is dedicated to solving an elliptic equation over the entire do-

main when imposing the fluid incompressibility constraint. One promising alternative to breaking this

computation bottleneck while maintaining fluid (quasi-)incompressibility is to use the lattice Boltzmann

(LB) method [13, 76, 197] for the fluid update, as proposed by Sun in her master’s thesis [101].

49

Originating from the kinetic theory of gases [198, 199], the LB method uses mesoscopic probabil-

ity distribution functions, known as populations, as the main simulation variables, rather than tracking

macroscopic hydrodynamic fields as in other Eulerian methods. Macroscopic fields, particularly density

and velocity, can be retrieved from this statistical view of fluid motion as moments of populations [200]

through nested for-loops. Since calculations are local, the LB method requires no special adjustment to

accommodate complex geometries of multi-body interactions [201, 202], and is well-suited for paralleliza-

tion [203–205]. Unlike the projection method [20, 196] which imposes exact geometric incompressibil-

ity by projecting the velocity field to be divergence-free, the LB method does not solve the Poisson prob-

lem for pressure to impose the fluid incompressibility constraint. Instead, this constraint is automatically

encoded in the LB method under the small Mach number limit for fully-developed simulations [76]. At

the cost of losing exact geometric incompressibility, the LB method can substantially improve the code

performance in the fluid update for the RMT-based FSI simulations.

However, existing LB boundary conditions do not constitute a fully-integrated LB method for FSI

simulations [206] to simulate multiple moving finite-strain solids of different densities on a fixed compu-

tational grid. These boundary conditions can be broadly grouped into two types [206]: collision-based

and force-based. Collision-based methods, like bounce-back methods [207–209], extrapolation meth-

ods [210–213], and Ladd’s collision-based coupling method [214], require modifications to the collision

operator and can only simulate rigid solids. Force-based methods, like coupling with stochastic particle

dynamics [215] and immersed boundary methods [63], allow solid forces to be computed along the solid–

50

fluid interface as Lagrangian markers. However, they require two frameworks and spend considerable

computation time in force interpolations between Eulerian and Lagrangian. Although force-based meth-

ods have successfully simulated deformable solids, such as polymer chains [215] and red blood cells [63],

there is still a need for a fully Eulerian boundary condition to model moving deformable solid–fluid inter-

faces with density difference. This boundary condition is different from the multicomponent LB inter-

face [216], which uses phase field to represent each fluid component on an Eulerian grid while imposing

interfacial forces on the membrane of fluid-filled objects [217]. It is also different from the Cahn–Hilliard

formulation [218], which uses a phase field [219] to represent a smooth function between two phases.

Our Eulerian boundary condition aims to enable a fully-integrated LB method for modeling FSI [206]

that can explicitly calculate solid stress and solid–fluid interaction on a single fixed Eulerian grid, thus

permitting direct implementation to optimize the parallel processing capability of the LB method.

In this chapter, we present the lattice Boltzmann reference map technique (LBRMT), a fully-integrated

lattice Boltzmann method for FSI simulations. It blends the parallel fluid calculation of the LB method

and the Eulerian solid deformation of the RMT for a fully Eulerian FSI simulation approach. In ad-

dition to increasing the computation speed and the maximum number of solids in the simulation, the

LBRMT introduces a new LB boundary condition method to couple finite-strain solids with fluids on

the same computational grid. This boundary condition, smooth flux correction, is designed to preserve the

flux across the solid–fluid interface, thus allowing us to maintain the density difference between the two

phases while ensuring all computations are still locally parallelizable. We present the theoretical formula-

51

tion and numerical implementation of the LBRMT, where we introduce the RMT, the LB method, and

the FSI configuration with the new LB boundary condition in Section 3.2. We detail the numerical meth-

ods in Section 3.3, with a highlight on the custom multimaps data structure for simple solid tracking

and collision detection in multi-body contact. Finally, we establish the baseline accuracy of the LBRMT

with a benchmark example in Section 3.4.1, then showcase its functionalities to model solid rotating in

Section 3.4.2 and settling in Section 3.4.3, and bio-inspired simulations of collective behavior in complex

suspension Section 3.4.4. We conclude our method and discuss future directions in Section 3.5.

3.2 Theoretical formulation

Both solids and fluids satisfy the Cauchy momentum equation,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= ∇ · σ + fext, (3.1)

where ρ,v,σ represent the global density, velocity, and stress field, respectively. We absorb external body

forces (such as gravity) into fext. Naturally for σ, we use solid stress for solids and fluid stress for fluids.

For solids, we use the RMT to directly compute the solid stress σs from the deformation gradient tensor.

For fluids, we mesoscopically reconstruct the fluid stress σf with the LB method. We build a smooth

transition between the solid and fluid phases to maintain a global density, velocity, and stress field. This

smooth transition, the blur zone, is defined based on the level set values of the solid–fluid interface. Within

the blur zone, we introduce a smooth flux correction to maintain density difference between two phases.

52

A B

LagrangianMesh-free

Eulerian–Lagrangian Eulerian

X

x x

Global velocity field

Initial undeformed configuration Deformed configuration at time t

Reference map

Mapping

Figure 3.1: Illustration of large solid deformation and lattice Boltzmann referencemap technique. (A)Reprise of Fig. 1.1with an emphasis

on Eulerian methods. Types of FSI methods based on the solid and fluid discretization frameworks. Mesh-free methods use particles to

represent both phases; Lagrangian methods use unstructured adaptive meshes for both solids and fluids; Eulerian–Lagrangian methods

use a fixed Eulerian mesh for the fluid, but moving Lagrangian markers for solids; and Eulerian methods only use one fixed computational

grid for both phases. (B)Overview of the large solid deformation and the lattice Boltzmann reference map technique for FSI simulations

on a fixed computational grid. A time-dependentmappingχ(X, t) is applied to an initially undeformed solid with a reference coordinate

systemX , resulting in a deformed coordinate systemat time t. The inversemapping is the referencemapξ(x, t), whichmaps a deformed

solidback to its initial configurationon thesamefixedgrid. A level set functionϕ(x, t) is employed todefinesolidgeometries,whosesigned

value determines the solid and fluid phases. To transition between the two phases, a blur zone with half-width ε is defined as |ϕ| < ε to
smooth out the density, velocity, and stress field.

3.2.1 Reference map technique

The reference map technique (RMT) is an Eulerian numerical method to simulate solids undergoing

large deformation. We use a finite-strain hyperelastic model [84, 220] to describe the solid material. In

Fig. 3.1(B), at time t = 0, the solid is at an undeformed reference configuration with coordinate system

X . After some time t, the reference configuration is deformed to a new coordinate system x. Consider

a continuous time-dependent mapping χ(X, t) from the undeformed coordinate X to the deformed

coordinate systemx, i.e.x = χ(X, t), we can denote the deformation gradient tensorF [85, 87, 221] as

the derivative of each component of the deformed coordinate system x with respect to each component

53

of the reference coordinate system X ,

F =
∂χ

∂X
. (3.2)

The deformation gradient tensor F can also be expressed in terms of the reference map ξ(x, t) [84],

which is an Eulerian mapping from the deformed coordinate system x to the undeformed coordinate

system X . Since ξ(x, t) is the inverse mapping of χ, by the chain rule, it also gives rise to an Eulerian

definition of the deformation gradient tensor F ,

F =

(
∂ξ

∂x

)−1

. (3.3)

The reference map field ξ is initialized as ξ(x, 0) = x and satisfies the advection equation with a material

velocity v of the solid, which allows us to evolve solid deformation through time:

∂ξ

∂t
+ (v · ∇) ξ = 000. (3.4)

The RMT is an Eulerian method for simulating solid mechanics because the main simulation compo-

nent, the reference map field ξ, is an Eulerian field that can be easily tracked and calculated. On a fixed

Eulerian grid, each node stores the reference map field ξ and material velocity v. At a given time t, we

use Eq. (3.3) to calculate the deformation gradient tensor F . With a constitutive relation f, we specify

the solid stress σs = f(F). Using the Cauchy momentum equation Eq. (3.1), the divergence of the solid

stress∇·σs formulates the update rule for the material velocity v. After obtaining the updated material

54

velocity, we advect the reference map field ξ to step forward in time. Eqs. (3.1), (3.3) and (3.4) form one

update on the solid deformation using the RMT, and this process can be discretized using any Eulerian

discretization schemes.

3.2.2 Lattice Boltzmann method with forces

Based on the kinetic theory of gases [198, 199], the lattice Boltzmann (LB) method simulates fluid dynam-

ics via a minimal form of the Boltzmann equation in a discrete velocity space [76]. In a two-dimensional

discrete space–time domain with equal grid spacing ∆x∗ = ∆y∗ and timestep ∆t∗, the velocity space is

reduced to nine discrete velocities ci = ∆x∗/∆t∗, known as the D2Q9 model [222, 223]. For a node

(x, t) in the discrete D2Q9 space, it has nine probability distribution functions fi(x, t)—commonly re-

ferred to as populations in the LB literature [13]. Each population fi represents the possibility of moving

in the direction of velocity ci. Because the grid spacing and timestep are typically set to be dimensionless

(∆x∗ = 1, ∆t∗ = 1) in the LB literature [76], the discrete velocity ci has unit velocity components (Ta-

ble 3.1) and can only spatially increment to eight neighboring nodes in one timestep (Fig. 3.2(A)). This

nondimensionalized unit choice also generalizes the LB simulations to physical systems of any size. To

convert simulations back to real-life scale, we simply need to multiply the respective physical unit scales;

this conversion is derived in detail in Appendix B.1.

Rather than directly solving the Navier–Stokes equations, the LB method reconstructs macroscopic

fields, fluid density ρ and velocity v, by tracking mesoscopic populations fi(x, t) using the discretized

55

Direction i Discrete velocity ci Weight wi

0 (0, 0) 4/9
1 (1, 0) 1/9
2 (0, 1) 1/9
3 (−1, 0) 1/9
4 (0,−1) 1/9
5 (1, 1) 1/36
6 (−1, 1) 1/36
7 (−1,−1) 1/36
8 (1,−1) 1/36

Table 3.1: Summary of the velocity sets ci and their weightswi inD2Q9 model. Each discrete velocity ci indicates a direction for fi at
node (i, j)moving to its eight neighboring nodeswith associatedweightswi. Since the LB simulations use dimensionless grid spacing and

timestep,∆x∗ = 1 and∆t∗ = 1, in the discretized domain,ci = ∆x∗/∆t∗ also has unit velocity components.

lattice Boltzmann equation (LBE), with the Bhatnagar–Gross–Krook (BGK) collision operatorΩi [224]:

fi(x+ ci∆t∗︸ ︷︷ ︸
=∆x∗

, t+∆t∗) = fi(x, t) + Ωi(x, t)︸ ︷︷ ︸
=f̂i

= fi(x, t)−
1
τ

[
fi(x, t)− f

eq
i (x, t)

]
︸ ︷︷ ︸

=Ωi(x,t)

, (3.5)

where populations fi(x, t) at position x move to the neighboring nodes x+∆x∗ with discrete velocity

ci in one timestep ∆t∗, while relaxing towards their equilibrium population f
eq
i via the BGK collision

operator Ωi. The local equilibrium distribution function f
eq
i is valid only when populations are close

to the Maxwell–Boltzmann equilibrium [225] and can be approximated by a second-order Taylor expan-

sion [13],

f
eq
i (x, t) = wiρ

[
1 +

v · ci
c2
s

+
(v · ci)2 − c2

sv
2

2c4
s

]
. (3.6)

In Eqs. (3.5) and (3.6), cs is the LB speed of sound, chosen to be cs =
√

1/3(∆x∗/∆t∗), τ is the relax-

56

ation time to local equilibrium, related to the kinematic viscosity ν = c2
s

(
τ − 1

2

)
, and wi is the weight

associated with each population, determined by the Hermite polynomial of the D2Q9 model (Table 3.1).

A B

Streaming step Smooth flux correction

Density difference and target density

 model

Figure 3.2: Diagram of theD2Q9 lattice model and the smooth flux correction boundary condition. (A) The blue arrows represent the

nine discrete velocities ci. Each fi is a probability distribution function of a particle velocity at (i, j) in the direction of the blue arrow.

The empty circles represent the neighboring nodes. In the streaming step, each post-collision f̂i moves from its original position in the

direction of the arrow to its neighboring nodes. Its value thenbecomes the newfi of these nodes in the next timestep. (B) Illustration of the

smooth flux correction (SFC) for solid–fluid interfacewith density difference. In order to remove the outgoing flux from the higher density

region to the lower density region, we add a correction flux (green arrows) to the original outgoing populations (transparent red arrows)

of a node to remove additional fluxes crossing the interface. We then add these additional fluxes back to f0 to enforce mass conservation.

The resultant outgoing populations are labeled with red arrows with green outlines. The amount of flux removed depends on the density

differences between the two regions, which can be computed from the target density based on the blur zone (Eq. (3.11)).

The LBE (Eq. (3.5)) can be decomposed into two parts: a collision step and a streaming step. The col-

lision step, characterized by the BGK collision operator Ωi, computes post-collision populations f̂i and

controls how populations fi of one node locally interact with each other and relax toward their Maxwell–

Boltzmann equilibrium due to the effect of microscopic particle collision. Momentum is conserved in

the collision step, while the kinetic energy is not, hence resulting in energy dissipation in the form of vis-

cosity. In the streaming step (Fig. 3.2(A)), post-collision populations f̂i move forward to the neighboring

nodes along the ci direction, becoming the updated fi for the next timestep. There is no information loss

57

since the streaming step is local to each node thus exact up to machine precision. As the LB method steps

forward in time with timestep ∆t∗ in a discretized space with grid spacing ∆x∗, it is essentially a finite-

difference method on a fixed Eulerian grid. This analogy makes the LB method an ideal complement to

the RMT for FSI simulations.

When external forces are present, we can compute macroscopic fluid quantities as moments of popu-

lations fi following the forcing scheme of Guo et al. [226] by modifying Eq. (3.5) to include a forcing

term Fi:

fi(x+ ci∆t∗, t+∆t∗) = fi(x, t) + Ωi +∆t∗
(

1− 1
2τ

)
Fi. (3.7)

Each forcing term Fi corresponds to one population fi, and is related to a second-order approximation

of the weighted macroscopic external force density F in the velocity space:

Fi = wi

(
ci − v

c2
s

+
(ci · v) ci

c4
s

)
· F . (3.8)

In order to ensure a second-order time accuracy to prevent unstable simulations with uncontrollable

noise caused by discrete lattice artifacts [76], a half-force correction is added to the equation of veloc-

ity (Eq. (3.9)). Macroscopic fluid fields can thus be retrieved from moments of population fi. The zeroth

moment is the fluid density ρ, and the first moment corresponds to the local fluid momentum, i.e. the

fluid velocity v:

ρ =
∑
i

fi, v =
1
ρ

∑
i

cifi +
∆t∗

2ρ
F . (3.9)

58

The LB fluid update with some generic force densityF shares a similar configuration to the RMT solid

update. On a fixed Eulerian grid, each node stores the nine populations fi, the macroscopic density ρ and

velocity v, and if needed, the nine equilibrium populations f eq
i . At a given time t, we first use Eq. (3.6) to

calculate the equilibrium populationf eq
i with the current fluid densityρ and velocityv. We then perform

the collision step and calculate the collision operator Ωi with Eq. (3.5) and the external force density

Fi with Eq. (3.8). By combining these two terms together, we obtain the post-collision populations f̂i.

Following the streaming step, these post-collision populations f̂i become the updated populations fi at

the neighboring nodes. Lastly, we reconstruct the updated density ρ and velocity v using Eq. (3.9). For

now, we have not yet specified the macroscopic external force density F : It can be related to gravity, or a

pressure gradient of a channel flow. In Section 3.2.4, we connect this force densityF with the divergence

of the solid stress for FSI simulations.

3.2.3 Smooth flux correction

Here we introduce our new fully Eulerian boundary condition for a fully-integrated LB FSI method [206].

The smooth flux correction is a framework to preserve density differences between solids and fluids across

their interfaces. This framework does not imply that solid mechanics can be described using kinetic

theory—the assumptions on mesoscopic particles do not hold for solids. Instead, we employ the LB

method as a computational tool to enforce three constraints that are fundamental in FSI simulations:

mass conservation, momentum conservation, and density difference.

Suppose we have a one-dimensional (1D) density domain with two regions of densities ρf and ρs,

59

where

ρ =


ρf if x < 0

ρs if x ≥ 0
and ρs > ρf . (3.10)

If we do not impose any modifications on x, there will be flux led by diffusion from the higher density

region to the lower density region. Even though the total mass is conserved in diffusion, ρ will eventually

average to (ρf + ρs)/2 in the entire domain, thus losing the density difference. To counteract this out-

going flux from ρs to ρf , we impose a correction at x = 0 to make up for the loss of flux in ρs and remove

excessive flux in ρf .

The basic idea of our correction is based on flux balance: We subtract the excessive flux qe from the

total flux q going from the higher density region to the lower density region to ensure density difference.

Denote the velocity at x = 0 as v, then qe = (ρs − ρf)v. If we subtract qe from the outgoing flux

q = ρsv, then there should be no diffusion flux from the higher density region to the lower density

region, thus preserving the density difference. Since density flux q is equivalent to momentum J =

ρv, we modify the LB populations to ensure no excessive population leaving the higher density region.

By putting the outgoing flux back onto f0, we have also ensured mass and momentum conservation;

see Appendix B.3 for the derivation.

We extend this 1D correction to the two-dimensional (2D) D2Q9 model and develop the smooth flux

correction (SFC) to preserve the density difference (Fig. 3.2(B)). We compute the excessive flux based on

the density difference ∆ρ between solids and fluids. ∆ρ is a smooth transition between the two phases

60

A B

Streaming

Initialization

Equilibrium

Streaming

Initialization

Equilibrium

Density flux due to diffusion Correction to prevent flux crossing interface

Figure 3.3: Illustration of one-dimensional smooth flux correction. (A)Without any constraints on the solid–fluid interface, density flux

goes from the higher density region (xs) to the lower density region (xf). This flux blurs the density difference between the two phases in

the streaming and equilibrium steps, eventually averaging out the density in the domain. (B)By adding a correction to the solid node closest

to the interface, i.e. removing additional outgoing flux and putting it back to the green node, we can preserve the density difference. The

outgoing flux, illustrated by the purple arrow, is the difference between the density flux fromxs toxf (the red arrow) and the density flux

fromxf toxs (the blue arrow). The correction flux (the green arrow) is equal and opposite to the outgoing flux.

in the blur zone, computed as the difference between the target density ρt and fluid density ρf :

∆ρ = ρt − ρf where ρt = Hε(ϕ)ρf + (1−Hε(ϕ)) ρs. (3.11)

The target density field is a reference density field based on the geometric configuration of solids defined

by the level set function. By correcting the flux, we let the populations relax toward the reference density

field, which preserves the density difference. With the SFC, the equilibrium populations f eq
i become

f
eq
0 = wiρ

[
1− c2

sv
2

2c4
s

]
+

8∑
i=1

wi∆ρ,

f
eq
i = wiρ

[
1 +

v · ci
c2
s

+
(v · ci)2 − c2

sv
2

2c4
s

]
− wi∆ρ (i = 1, . . . , 8).

(3.12)

61

This correction essentially acts as a zeroth-order correction on the flux, enough to capture the density

difference. Although in Fig. 3.3 we implicitly assume that the solid has higher density (ρs > ρf), the

SFC remains the same for lighter solids (ρs < ρf).

3.2.4 Fluid–structure interaction

In this paper, we limit the FSI configuration to deformable solids immersed within fluids (Fig. 3.1(B)).

Solids are modeled as incompressible neo-Hookean material [227], and fluids as quasi-incompressible.

Under this assumption, we can decompose the Cauchy stress σ into a pressure field p and a deviatoric

stress τ for both phases. In Section 3.2.1 and Section 3.2.2, we have discussed how to simulate solids

and fluids respectively. For solids, we use the reference map field ξ to construct the deformation gradient

tensor F and the deviatoric solid stress τs,

τs = f(F) = G

(
FF T − 1

3
111
(

tr
(
FF T

)
+ 1
))

, (3.13)

where FF T is the left Cauchy–Green deformation tensor and G is the small-strain shear modulus. For

fluids, we use the LB populations to reconstruct ρ and v without calculating the fluid stress. For consis-

tency in notation, we also list the deviatoric fluid stress τf , which obeys the Newtonian fluid assumption,

τf = µf

(
∇v + (∇v)T

)
, (3.14)

62

where the kinematic viscosity is νf = µf/ρf . In the LB method, we could compute the fluid stress locally

as the non-equilibrium populations f neq
i = fi − f

eq
i ; but it is not needed in most simulations.

We use a level set function ϕ(x, t) [77, 78] to represent the solid geometry. The signed distance to the

solid–fluid interface follows the convention thatϕ < 0 in the solid andϕ > 0 in the fluid. To form a con-

tinuous description of the solid–fluid interface, we build a smooth transition between the solid and fluid

phases. This transition region is called the blur zone, which can be realized through a smoothed Heaviside

function Hε(ϕ) with a transition region of width 2ε following the IncRMT implementation [98]:

Hε(ϕ) =



0 if ϕ ≤ −ε (pure solid),

1
2

[
1 +

ϕ

ε
+

1
π

sin
(
πϕ

ε

)]
if |ϕ| < ε (blur zone),

1 if ϕ ≥ ε (pure fluid).

(3.15)

This Heaviside function is twice-differentiable and has been used frequently for smooth transitions[228–

231]. The blur zone is equivalent to the no-slip boundary conditions on the solid–fluid interface.

We define the global deviatoric stress τ as a smooth transition between the solid stress and the fluid

stress:

τ = Hε(ϕ)τf + (1−Hε(ϕ)) τs. (3.16)

Similarly, the global density ρ forms a smooth transition between the solid density and the fluid density:

ρ = Hε(ϕ)ρf + (1−Hε(ϕ)) ρs. (3.17)

63

The reference map field ξ(x, t) is defined only within the solid region (ϕ < 0). To perform the Heaviside

calculation in Eq. (3.16), we need the deviatoric solid stress τs in the second half of the blur zone (0 <

ϕ < ε), which can be computed by extrapolating ξ out of regions enclosed by the solid–fluid interface

(ϕ = 0). We define the extrapolation zone with a widthw no smaller than 1.5∆x∗+
√

2ε, and use a least-

square regression procedure to reconstruct the extrapolated reference map values [98]—see Section 3.3.2

for further details.

The LBRMT takes a mesoscopic approach to solving the smoothed Cauchy momentum equation:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+∇ · τf︸ ︷︷ ︸

background fluid
stress of LB nodes

+∇ · [(1−Hε(ϕ)) τs]︸ ︷︷ ︸
large-deformation

solid stress

+(1−Hε(ϕ))fext,s︸ ︷︷ ︸
external forces
on solid only

+Hε(ϕ)fext,f︸ ︷︷ ︸
external forces
on fluid only

.

(3.18)

For a pure fluid node, Eq. (3.18) simplifies to the Navier–Stokes equations. Whereas for a pure solid

node, Eq. (3.18) becomes the Cauchy momentum equation with an additional fluid stress term. The

additional term can be viewed as an artificial viscous stress onto the solid node. Numerically speaking, its

presence adds damping to simulation and prevents numerical instability. Compared to the IncRMT [98],

whose implementation additionally incorporates a similar artificial viscous stress inside the solid region,

the LBRMT obtains this artificial viscous stress as a natural outcome of the LB method. In the current

LBRMT, this stress is tied to fluid viscosity rather than being tunable, but it could be altered in future

implementations, such as modifying the equilibrium populations to factor out the fluid stress [218].

Since all nodes in the LBRMT are structured as LB nodes, we only need to calculate the divergence of

64

the solid stress∇ · τs and not that of the fluid stress τf . The effect of τf is built into the first moment in

the LB method—no need to explicitly calculate the deviatoric fluid stress for the global deviatoric stress.

Since the divergence of stress has the same units (L/T 2) as the force density, we can smoothly combine

the divergence of the solid stress∇ · τs, external force densities on solids fext,s and on fluids fext,f into a

force density F :

F = ∇ · [(1−Hε(ϕ)) τs] + (1−Hε(ϕ))fext,s +Hε(ϕ)fext,f . (3.19)

This force density F is then passed into Eq. (3.7) as the macroscopic external force density, which can be

rewritten into the LB populations using Eq. (3.8). Finally, we arrive at a general formulation to include

the effect of large-deformation solid stress into LB populations fi. Eq. (3.19) is the cornerstone of the

LBRMT: It connects the solid stress computed with the RMT to the LB external force density.

3.3 Numerical implementation

The LBRMT essentially combines two Eulerian methods onto one fixed computational grid. The

solid update follows the IncRMT [98]: We first update the reference map field ξ via advection, then

extrapolate ξ and update the solid–fluid interface by relabeling the solid and the fluid nodes based on the

new signed distance values. We then calculate the solid stress τs, and finally pass the divergence∇ · τs

as external force densities to the LB method. The fluid update follows the LB routines [76]: We update

the global density ρ and velocity v fields as moments of populations fi. We summarize the LBRMT

in Algorithm 1, where blue represents the LB routines, red represents the RMT routines, and purple

65

represents hybrid routines. The main loop involves ten steps. It can be considered as a standard LB fluid

solver coupled with the RMT to calculate external force densities. Here we pay special attention to the

three purple steps (11, 12, and 15) as they carry the essence of the LBRMT: These two steps incorporate a

smooth description of both solids and fluids, as well as a unified implementation of the no-slip solid–fluid

interface using the blur zone.

Algorithm 1: The LBRMT pseudocode.
1 Begin
2 Initialize the global density field ρ, global velocity field v0, and populations fi ;
3 Initialize the solid reference map field ξ0 ;
4 Label the solid and fluid nodes using the level set function ϕ(ξ0) ;
5 LOOP ρn+1,vn+1, ξn+1, fn+1

i ← ρn,vn, ξn, f̂i
n, ϕ

6 Update the reference map ξn+1 ;
7 Extrapolate the reference map values in the extrapolation zone ;
8 Relabel the fluid and solid nodes in the extrapolation zone using ϕ(ξn+1) ;
9 Compute the divergence of solid stress∇ · τ n+1

s ;
10 Calculate the equilibrium populations f eq

i
n and collision operators Ωn

i ;
11 Calculate the smoothed external force densities F n

i ;
12 Calculate the post-collision populations f̂in ;
13 Apply the wall boundary conditions ;
14 Stream f̂i

n to neighboring lattices to update fn+1
i ;

15 Compute updated ρn+1, and vn+1 as moments ;

16 end

The LBRMT software code is custom implemented in C++ and multithreaded with OpenMP for paral-

lelization. We denote the simulation domain with length L and height H , divided into an nx × ny grid

of nodes with equal grid spacing ∆x∗ = ∆y∗ . Two extra layers of nodes are padded to each domain

direction for considerations of boundary conditions and second-order stencils. We use subscripts i and

66

j to represent x and y indices for i = −2, . . . , nx + 1 and j = −2, . . . , ny + 1. We use superscript n

to denote timestep and advance the simulation from timestep n to n + 1 with interval ∆t∗. (We drop

the asterisk superscript in subsequent subsections for simplicity of notation.) Each node (i, j) stores sim-

ulation variables (Fig. 3.7(B)) including density ρi,j , velocity vi,j , LB populations fi, LB force densities

Fi, and a custom-developed data structure multimaps—holding the reference map field ξi,j and the cor-

responding level set value ϕi,j for solid nodes; see Section 3.3.6 for details. Certain temporary variables

are instantiated between nodes (i.e. half-edge) only for solid stress calculation purposes. Following the

FSI configuration in Fig. 3.1(B), we employ a level set function ϕ to denote the solid geometry. The blur

zone is centered at the solid–fluid interface (ϕ = 0) with a half-width ε and an extrapolation zone of l

layers. We initialize a reference map field ξ0 within the solid region (including the extrapolation zone),

a global density field ρ, and a global velocity field v0—we further discuss the advantages of one global

velocity field for multi-body contact in Section 3.3.6. We summarize relevant simulation parameters and

variables in Table 3.2.

Simulation parameter Symbol Dimension

Reynolds number Re 1
Density ρ M/L3

Kinematic viscosity ν L2/T
Shear modulus G M/(LT 2)

Gravitational constant g L/T 2

Relaxation time τ T
Simulation time t T

Table 3.2: Relevant LBRMT simulation parameters with their symbols and physical dimensions.M,L, T represent units of mass, length,

and time. Details about unit conversions and parameter choices of the simulation variables and parameters are in Appendix B.1.

67

3.3.1 Reference map advection

We first update the reference map field ξ in the solid region (ϕ < 0; not including the blur zone). Denote

the components of the reference map field and the velocity field as ξ = (X,Y) and v = (u, v), the

advection equation of the reference map field in Eq. (3.4) can be discretized as

ξn+1
i,j = ξni,j − (u∂x + v∂y) ξ

n
i,j. (3.20)

An upwinding second-order finite difference method (Fig. 3.5(A)) is used for calculating the derivatives:

∂ξi,j
∂x

=


3ξi,j − 4ξi−1,j + ξi−2,j

2∆x
if u > 0,

−3ξi,j + 4ξi+1,j − ξi+2,j

2∆x
if u < 0,

∂ξi,j
∂y

=


3ξi,j − 4ξi,j−1 + ξi,j−2

2∆y
if v > 0,

−3ξi,j + 4ξi,j+1 − ξi,j+2

2∆y
if v < 0.

(3.21)

3.3.2 Reference map extrapolation and level set update

We extrapolate the reference map field ξ out of the solid region so that each node within the blur zone

has updated ξ values when computing the solid stress. The extrapolation routine is based on fitting

a weighted least-squares regression [98, 99] instead of partial differential equation (PDE)-based meth-

ods [81, 96, 232]. This alternative reduces the complexity of explicitly keeping track of the level set values

68

ϕ and the reference map field ξ in the extrapolation. The extrapolation zone is wider than the blur zone,

defined with a width no smaller than 1.5∆x +
√
ε to ensure valid second-order stencils in solid stress

calculations. The first layer in the extrapolation zone is marked by extending one node in four direc-

tions (up, down, left, right) of the exterior solid solids (Fig. 3.4(A)). Each subsequent layer of index l

is marked one-by-one by extending one node outward from previous layers. The extrapolation proce-

dure (Fig. 3.4) follows that in the IncRMT [98] and RMT3D [99], starting at the target node (i, j) at

position x = (x, y) in the first layer l = 1:

A B C

Mark Layer 1 nodes Extrapolate Layer 5 nodesExtrapolate Layer 1 nodes

Fluid node

Solid node

Extrapolation zone

Layer 1 (unset)

Layer 1 (extrap)

Layer 1 (set)

Layer 2

Layer 3

Layer 4

Layer 5

Scan window

Figure 3.4: Illustration of the reference map extrapolation. The extrapolation procedure starts from the first layer in the extrapolation

zone and then moves outward to the next layer after all nodes have been extrapolated. (A) The first layer l = 1 is initialized by extending
one node in four directions (up, down, left, right) of the exterior solid solids (red nodes). Layer 1 nodes have only been marked with their

positions, meaning they are unset (empty orange nodes) with no extrapolated referencemap values. After marking all nodes in Layer 1, we

proceed to compute their extrapolated reference map values ξextrap. (B) For the target node (i, j) (empty orange square), we initialize a

scanwindow centered at it with a half-width r = 2. Within the scanwindow, we compute its extrapolated referencemap values using the

valid nodes (enlarged red nodes). (C)We perform the extrapolation layer by layer. In the scenario when the linear map is ill-defined or we

find fewer than three valid nodes within the scan window, we gradually increase the scan window half-width by 1. For an example case of

a target node in Layer 5 (empty gray square), its scan window has been increased to a half-width r = 5 to include more valid nodes from

previous layers (enlarged red, orange, yellow, light and dark green nodes) in the extrapolation procedure.

1. Initialize a scan window centered at node (i, j) with an initial half-width r = 2. Count the num-

ber of valid nodes (i′, j ′) at position x′ = (x′, y′) in the scan window (Fig. 3.4(B)) such that

69

ri = |i− i′| ≤ r and rj = |j − j′| ≤ r. If there are fewer than three valid nodes within the scan

window, we increase the half-width r by 1 to include more valid nodes (Fig. 3.4(C)) and repeat

Step (1). Note that a valid node is either a solid node or in the previous layers l(i′,j′) < l(i,j) with

existing reference map values.

2. Use weighted least-squares regression to fit a linear map ξextrap(x, y) = w (Ax+By + C) with

available reference map values of enclosed valid nodes and their positional indices. We also employ

coordinate-based weighting with an exponential decaying kernel centered at (i, j). In the first two

layers (l ≤ 2), we encode complex geometric information with an approximated surface normal

n̂e of ϕ and a physical distance vector d = x − x′ between the target node and the valid node.

The weighting w is defined as

w =


max

(
0,

d · n̂e

|d|
2−(ri+rj)

)
if l ≤ 2,

2−(ri+rj) if l > 2.

(3.22)

If the linear map is ill-defined, we increase the half-width r by 1 and repeat Step (1) and (2);

3. Assign ξextrap to be the reference map value at the target node (i, j).

Once all nodes in the first layer have been processed, we move outward to the next layer. After com-

pleting the extrapolation of all layers, we need to re-calculate the level set values ϕ for all nodes in the

extrapolation zone because they may change from solid to fluid, and vice versa. This extrapolation proce-

70

dure offers a smooth transition between the solid and fluid phases, requiring no additional bookkeeping

about density, velocity, or no-slip solid–fluid interface. It also provides valid reference map values for the

subsequent solid stress computation (Section 3.3.3) because we use a second-order method to compute

gradients (Eq. (3.24)), i.e.we need at least four additional nodes in each direction (starting the count from

the exterior solid nodes at ϕ = 0).

3.3.3 Solid stress computation

Our goal is to construct∇·τs, which is used as the macroscopic external force density F in Eq. (3.7). At

node (i, j), this divergence is calculated based on four half-edge solid stresses [τs]i− 1
2 ,j

, [τs]i+ 1
2 ,j

, [τs]i,j− 1
2

and [τs]i,j+ 1
2

respectively to the left, right, bottom, and top of the node. Each half-edge solid stress is com-

A

Reference map advection Divergence of the solid stressDeformation gradient tensor

B C

Figure 3.5: Stencils for the referencemap advection and solid stress computation. There are three key steps to compute the divergence of

the solid stress at node (i, j): (A)Wefirst calculate the gradients of the referencemapfield∂ξ/∂x from the referencemap advection; (B)

then we build the half-edge deformation gradient tensorF using the computed gradients; (C) after converting the half-edgeF into half-

edge solid stress τs = f(F)with a constitutive relation f, we use the four half-edge τs around node (i, j) to construct∇ · τs. Each of
these steps corresponds to a panel illustrating the stencils required for discretization, with the example of the left half-edge solid stress: (A)

Three nodes are used for referencemap advection in thex directionwhenu > 0, (B) six nodes are used for constructing the left half-edge
deformation gradient tensor, and (C) nine nodes are involved for all four half-edge solid stresses.

71

puted from the Jacobian of the reference map field ξ with a second-order finite difference scheme [98].

For example, to compute the left half-edge solid stress [τs]i− 1
2 ,j

, the gradients involved (Fig. 3.5(B)) to

calculate the Jacobian are

(
∂ξ

∂x

)
i− 1

2 ,j

=
ξi,j − ξi−1,j

∆x
,

(
∂ξ

∂y

)
i− 1

2 ,j

=
ξi,j + ξi−1,j+1 − ξi,j−1 − ξi−1,j−1

4∆y
.

(3.23)

Since we focus on two-dimensional simulations, the Jacobian is denoted as a 2 × 2 matrix. The corre-

sponding deformation gradient tensor is

Fi− 1
2 ,j

=

((
∂ξ

∂x

)
i− 1

2 ,j

)−1

. (3.24)

In the LBRMT, we model the solid phase as an incompressible neo-Hookean solid. For two-dimensional

simulations, this constitutive relation for solid stress τs = f(F) follows a plane-strain formulation:

[τs]i− 1
2 ,j

= G

(
Fi− 1

2 ,j
F T

i− 1
2 ,j
− 1

3
111
(

tr
(
Fi− 1

2 ,j
F T

i− 1
2 ,j

)
+ 1
))

, (3.25)

where G is the small-strain shear modulus. We think of two-dimensional simulations being infinitely

extruded in the third dimension, thus the +1 term in Eq. (3.25) is originated from zero stretch in that

third dimension. Similarly, we can compute the three other solid stresses using the same discretization

72

scheme. Once the four intermediate half-edge stresses are set (Fig. 3.5(C)), the divergence of the solid

stress at node (i, j) is

[∇ · τs]i,j =

(
[τs]i+ 1

2 ,j

)
x
−
(
[τs]i− 1

2 ,j

)
x

∆x
+

(
[τs]i,j+ 1

2

)
y
−
(
[τs]i,j− 1

2

)
y

∆y
, (3.26)

where subscriptsx andy represent the tensor components acting on the horizontal and vertical directions.

Eq. (3.26) is then passed into the LB updates via Eq. (3.19) to build the external force density F .

3.3.4 Density and velocity updates

The calculations of macroscopic quantities, i.e. the global density field ρ and global velocity fieldv, follow

the standard LB update routines. We first compute the equilibrium populations f eq
i for all nodes with

their respective density and velocity values using Eq. (3.12), where the density difference ∆ρ is defined

in Eq. (3.11). For better code performance [76], we use the expanded forms of the nine equilibrium pop-

ulations in Eq. (3.27) when calculating updates (and all subsequent calculations involving populations):

f
eq
0 =

2ρ
9
(

2− 3
(
u2 + v2))+ 5

9
∆ρ,

f
eq
1 =

ρ

18
(

2 + 6u+ 9u2 − 3
(
u2 + v2))− 1

9
∆ρ,

f
eq
2 =

ρ

18
(

2 + 6v + 9v2 − 3
(
u2 + v2))− 1

9
∆ρ,

f
eq
3 =

ρ

18
(

2− 6u+ 9u2 − 3
(
u2 + v2))− 1

9
∆ρ,

f
eq
4 =

ρ

18
(

2− 6v + 9v2 − 3
(
u2 + v2))− 1

9
∆ρ, (3.27)

73

f
eq
5 =

ρ

36
(

1 + 3 (u+ v) + 9uv + 3
(
u2 + v2))− 1

36
∆ρ,

f
eq
6 =

ρ

36
(

1− 3 (u− v)− 9uv + 3
(
u2 + v2))− 1

36
∆ρ,

f
eq
7 =

ρ

36
(

1− 3 (u+ v) + 9uv + 3
(
u2 + v2))− 1

36
∆ρ,

f
eq
8 =

ρ

36
(

1 + 3 (u− v)− 9uv + 3
(
u2 + v2))− 1

36
∆ρ.

These equilibrium populationsf eq
i are then used to construct the collision operatorsΩi = −

1
τ

(
fi − f

eq
i

)
.

To include forces in the density and velocity updates, we first compute the macroscopic external force den-

sity F using Eq. (3.19), which is a smooth combination of all solid and fluid force densities. We then use

Eq. (3.8) to discrete the macroscopic force density in theD2Q9 velocity space mesoscopically in Eq. (3.28):

F0 =
4ρ
9

(−3uFx − 3vFy) ,

F1 =
ρ

9
(3(1− u)Fx − 3vFy + 9uFx) ,

F2 =
ρ

9
(−3uFx + 3(1− v)Fy + 9vFx) ,

F3 =
ρ

9
(3(−1− u)Fx − 3vFy + 9uFx) ,

F4 =
ρ

9
(−3uFx + 3(−1− v)Fy + 9vFx) , (3.28)

F5 =
ρ

36
(3(1− u)Fx + 3(1− v)Fy + 9(u+ v)Fx + 9(u+ v)Fy) ,

F6 =
ρ

36
(3(−1− u)Fx + 3(1− v)Fy + 9(u− v)Fx + 9(−u+ v)Fy) ,

F7 =
ρ

36
(3(−1− u)Fx + 3(−1− v)Fy + 9(u+ v)Fx + 9(u+ v)Fy) ,

74

F8 =
ρ

36
(3(1− u)Fx + 3(−1− v)Fy + 9(u− v)Fx + 9(−u+ v)Fy) .

Having computed Ωi and Fi, we can assemble the post-collision populations f̂i with

f̂i = fi + Ωi +∆t

(
1− 1

2τ

)
Fi. (3.29)

After applying the wall boundary conditions (Section 3.3.5) specific to the simulation setup, we stream

f̂i to update the populations. Both solid and fluid (even blur-zone) nodes share the same macroscopic

quantities calculations, where we use the zeroth and the first moments of the updated populations fi to

calculate the updated density ρ and velocity u = (u, v) for the next timestep:

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8,

u =
1
ρ
(f1 + f5 + f8 − f3 − f6 − f7) +

1
2ρ

(F1 + F5 + F8 − F3 − F6 − F7) ,

v =
1
ρ
(f2 + f5 + f6 − f4 − f7 − f8) +

1
2ρ

(F2 + F5 + F6 − F4 − F7 − F8) .

(3.30)

3.3.5 Wall boundary conditions

There are two types of wall boundary conditions defining the simulation domain: periodic (Fig. 3.6(A))

and no-slip (Fig. 3.6(B)). Since the domain is padded with two layers of nodes, they act as buffers for copy-

ing or reflecting fluid nodes. These buffer nodes streamline the implementation of boundary conditions,

75

with no need to separately compute populations at the wall boundaries and at the corners [233]. Only the

inner buffer layer is used in the boundary conditions calculation (the outer one is used for second-order

stencils calculations). This setup of periodic boundary conditions has no information loss, whereas the

no-slip involves halfway bounce-back [214] to ensure second-order accuracy at the wall boundaries.

A B

Periodic boundary conditions No-slip boundary conditions

Figure 3.6: Diagram of wall boundary conditions. (A) The periodic boundary conditions on a simplified simulation domain. On the x-axis,
the left periodicity is imposed by filling the first buffer on the left (grey arrows) with the outward populations from the rightmost column of

fluid nodes (blue arrows), and the right periodicity is imposed by filling the first buffer on the right with the outward populations from the

leftmost columnof fluid nodes. The periodicity along they-axis is analogous. (B)The no-slip boundary conditions on a simplified simulation

domain. This direct on-node reflection bounces back the populations leaving the fluid region. The outward populations (blue arrows) at

each wall boundary are copied as the opposite direction populations (grey arrows) in the corresponding buffer nodes. These populations

are then streamedback to their original nodes, only reversed. The four corners of thefirst buffer layer need special handling since theyhave

only one population associated with the fluid region.

3.3.6 Multi-body contact

Since the LBRMT simulation grid contains only one global velocity field, it is straightforward to define

the collision of two or more objects as the overlaps of their geometries. To efficiently handle multi-body

contact, we develop a custom data structure—multimaps—to store reference map fields of many solid

76

objects onto one node. Since all reference map fields are created only within their local solid (plus blur

zone) region, one node can represent two or more solids. We identify each solid with an ID number, then

organize all reference map field information (e.g. ξ, ϕ, object ID) of each solid into a custom ref_map

structure (Fig. 3.7(B)). Instead of carrying the reference map information of all solids directly, each node

carries a C++ pointer to multimaps (Fig. 3.7(B)), which is a list of ref_map objects present at this node.

We use two integers, counter_mmap and max_mmap, to count the current number of ref_map objects

(i.e. solids) and the maximum number of solids a node can hold. All simulation nodes are instantiated

with a multimaps structure of length four.

For a fluid node, its counter counter_mmap remains zero. For a generic node associated with a solid

(including its blur zone), we instantiate a ref_map object, append it to the multimaps, and advance

counter_mmap by one. A node can contain ref_map objects associated with multiple solids. If the

counter exceeds half of the multimaps length (i.e. max_mmap), we double the length to account for more

solids present on the node. When a node is no longer part of a solid, we remove the associated ref_map

object from the multimaps. This dynamic update of valid ref_map objects allows us to keep the length

of multimaps short, typically limited to ten objects at most. The multimaps thus provides simplicity in

collision detection when simulating hundreds of solids: We do not need exhaustive search over all solids

for collision pairs; only need to search through the solids with IDs currently present in the multimaps

of one node (Fig. 3.7(B)). It brings additional advantages in data storage: We do not need to store the

reference map information of every solid on every node.

77

A B C

Simulation domain (lbrmt_2d) Custom data structures Collision stress computation

Node
(lattice)

Geometric & material properties
(object & mat_const)

rho, ux, uy, fi, feq, Fi, ...
*mmap, counter_mmap, max_mmap

multimaps (mmap)

Present solids
(obj_field)

X, Y, phi, id

X, Y, phi, id

Reference map field
(ref_map)

0 1 2 3

0 1

Figure 3.7: Schematics of simulation domain, custom data structures, and collision stress computation. The LBRMT code is designed to

model multiple solids interacting with fluids on the same computational grid. (A) Example of simulation nodes when two solids come into

contact. Blue nodes represent the fluid phase, red nodes represent solid i, and green nodes represent solid j . The light-red and light-green
areas represent halves of the blur zone outside the solid region, 0 < ϕ(i) < ε and 0 < ϕ(j) < ε, respectively. We identify collision

in the overlapping light-brown area. Brown nodes represent the collision nodes. (B)Customdata structures involved for a simulation node.

Each node is instantiated as a customlatticeobject, which carries variables likerho for density,ux anduy for velocity components,fi,
feq,Fi for LB updates. It also holds aC++ pointer to*mmap—a custommultimaps structure that can contain a list of customref_map
objects, an integer counter_mmap—the current number of ref_map objects (i.e. solids) present on the node (red and green boxes), and

an integer max_mmap—the maximum number of ref_map objects the node can currently contain (solid brown boxes). Each ref_map
object contains the reference map field information like the components X and Y, level set value phi and the corresponding object ID id.
The object ID is respectively associated with the present solids on the simulation domain, contained in a custom C++ array obj_field.
The material and geometric properties of the solids are specified through two custom structures, mat_const and object, where users
can define the solid density and softness, aswell as arbitrary shapes using level set functions (currently supporting circles, ellipses, squares,

triangles, rotors, and rods.) (C)We identify collision nodes by testing whether the counter counter_mmap is larger than one , i.e. there

are at least tworef_map objects in themmap. A collision stress is added to the collision node tomimic a repulsive force pushing the solids

apart, which is defined using the unit normal vectorn (purple arrow) between solids i and j .

We identify collision when the blur zone of two or more objects overlap, which means one collision

node (solid or blur zone) has at least two ref_map objects (Fig. 3.7(B)), or equivalently in C++ implemen-

tation counter_mmap>1. In the occurrence of collision, we add a local collision stressτcol on the collision

node to push the solids apart following the IncRMT [98] implementation:

τcol = −η min
[
f
(
ϕ(i)
)
, f
(
ϕ(j)
)] (

G(i) +G(j)
)(

n⊗ n− 1
2

111
)
, (3.31)

78

where η is a dimensionless constant to tune the collision effects between solids, G(i) are the shear moduli

of object i, and f is a function of the contact force between two colliding solids:

f(x) =


1
2

(
1− x

ε

)
if ϕ < ε,

0 if ϕ ≥ ε.

(3.32)

The unit normal vector n (Fig. 3.7(C)) between a pair of solids i and j indicates the direction of the

repulsive contact force, which can be computed with finite-difference schemes:

n =
∇
(
ϕ(i) − ϕ(j)

)
∥∇ (ϕ(i) − ϕ(j))∥2

. (3.33)

Similar to the IncRMT [98], we also modify the global stress τ to reflect the solid fraction λ(i) = 1 −

Hε

(
ϕ(i)
)

of each object i on one node:

τ =


τf +

∑
i

λ(i)τ (i)
s if

∑
i

λ(i) ≤ 1,∑
i λ

(i)τ
(i)
s∑

i λ
(i)

if
∑
i

λ(i) > 1.
(3.34)

When the simulation only has one solid, Eq. (3.34) simplifies to Eq. (3.16). When the simulation has

multiple solids, Eq. (3.34) collects individual solid stress to the global stress based on the solid fraction.

79

3.4 Results

Since we aim to showcase the diverse applications of the numerical method—not limited to a specific

application to one physical problem—we nondimensionalize all simulation parameters and variables in

all presented results. We follow the LB simulation conventions and set the fluid density ρf , timestep∆t∗,

and grid spacing∆x∗ to be ρf = 1,∆t∗ = 1, and∆x∗ = ∆y∗ = 1 for equal grid spacing. To convert the

nondimensional simulations to physical reality, we multiply the results and variables by the corresponding

density, time, and length scales. We refer readers to Appendix B.1 for conversions between physical and

dimensionless LB units and choices for simulation parameters, Appendix B.4 for timing results and code

performance, and Appendix B.5 for simulation movies. For subsequent results, we set the blur zone

half-width ε = 1.5 and 11 extrapolation zone layers to accommodate all solid deformation cases.

In the following subsections, we highlight the versatility of the LBRMT in simulating the interactions

of multiple solids in fluids undergoing large deformation through representative simulation examples.

We first establish the baseline accuracy of our method with a benchmark example in Section 3.4.1. We

then start with an example of anchored rotors in Section 3.4.2 to demonstrate the robustness of our

method in modeling contact, bending, and stretching of soft solids. In Section 3.4.3, we use examples

of settling and floating of different-shaped solids in fluid to highlight our method in modeling solids of

different densities with the smooth flux correction (Section 3.2.3). Moving to Section 3.4.4, we elevate the

complexity of single solid settling/floating by adding more solids, demonstrating our method in efficiently

simulating hundreds of solids while capturing their mixing behavior. In particular, we study whether

80

softness enhances mixing rate, and our findings indicate that softness can assist in more efficient mixing.

3.4.1 Comparison to benchmark example

The lid-driven cavity is a classic benchmark problem in computational fluid dynamics that simulates fluid

flow in a square cavity with the top lid moving at a constant speed. Its simple, yet non-trivial geometric

setup has led to extensive experimental and numerical studies in both two and three dimensions [234–

236] to understand the vortex structures formed by the fluid flow at different Reynolds numbers. Lid-

driven cavity simulations thus enable researchers to test and compare the accuracy and efficiency of dif-

ferent numerical methods for solving the Navier–Stokes equations, ranging from finite-difference [237,

238], to multigrid [235, 239] and the LB [240, 241] methods. Although the results on deformable solids

immersed in lid-driven cavity flow remain comparatively limited, Zhao et al. [242] simulated a deformable

disk in a two-dimensional square lid-driven cavity, which has been widely used to validate later works [89,

97, 99, 243, 244].

We first validate the LBRMT as a fluid solver by comparing with the benchmarks of Ghia et al. [235]

and Hou et al. [240] for lid-driven cavity without a solid. Our results match well with velocity profiles

along the geometric center (see Appendix B.2). We then introduce a neutrally buoyant deformable solid

into the cavity. The simulation parameters are matched with Zhao et al. [242], where a circle of radius

0.2L and shear modulus G = 0.1 is centered at (0.6L, 0.5L) in a square lid-driven cavity flow of size

L × L and the Reynolds number Re = 100. The top wall moves at a lid-driven velocity, and other

stationary walls have no-slip boundary conditions. We do not apply repulsive force when the solid is

81

0

1

0

1

0 1 0 1 0 1 0 1

y/
L

y/
L

x/L x/L x/L x/L

Vo
n

M
ise

s
st

re
ss

0

V

t = 0 t = 0.07T t = 0.14T t = 0.21T

t = 0.28T t = 0.35T t = 0.42T t = 0.49T

Si
m

ul
at

io
n

tim
e

0.25 0.5 0.75

0.5

0.7

0.9

Sugiyama et al.

-4%

-8%

0%

0 T/2 T

(a
)

To
p-

lid
sn

ap
sh

ot
(b

)
C

en
tr

oi
d

tr
aj

ec
to

ry
(c

)
Te

rm
in

al
sh

ap
e

G = 0.02 G = 0.03 G = 0.1 G = 0.5 G = 1.0 G = 10.0
0

T

Grid size

Er
ro

r
101 102 103

10-3

10-2

A B

E C

D

Figure 3.8: Benchmark example of a soft solid in a lid-driven cavity. (A) Snapshots of solid deformation in lid-driven flow. We overlay

the solid–fluid interface (thick red lines), reference map contours (thin red lines, which indicate how the solid deforms), and streamlines

(blue contours) of the LBRMT simulations with 75% transparency on Fig. 16 by Zhao et al. [242]. Our results match with the benchmark

streamlines (black solid lines) and solid outlines (black triangular mesh). The colors inside the solid represent the intensity of von Mises

stress, whichmeasures howmuch is the solid sheared. The colormap is normalized by themaximumstress valueVmax ≈ 0.004 in the time

range but clipped at V = 0.001. Simulation parameters are (L, τ, Re, ρf , ρs, G, T) = (200, 1.0, 100, 1.0, 1.0, 0.1, 40000). (B)
Solid centroid trajectory atG = 0.1 on different grid sizes overlaid on Fig. 11 by Sugiyama et al. [89]. In addition to good agreements, our

results match to their finest grid results on smaller grids. (C)Volumetric deviation on different grid sizes, from about 9.2% on the coarsest

grid to less than 1% on finer grids. (D) Spatial convergence rate of the LBRMT with 640 × 640 results as the reference. (E) Snapshots of

solid (a) deformation at the lid top, (b) centroid trajectory, and (c) terminal shapewith softnessG ∈ [0.02, 0.03, 0.1, 0.5, 1.0, 10.0]. The
colormap is normalized by themaximumstress value of all casesVmax ≈ 0.17 (atG = 10.0) in the time range but clipped atV = 0.003.

close to the top lid to capture the effect of lubrication forces. Given the parameters in Zhao et al. [242]

are dimensionally different from the LB units, we first convert their dimensionless parameters to physical

units and then convert back to LB units.

Fig. 3.8A confirms the LBRMT results are in good agreement with the streamlines and the solid out-

82

lines in Zhao et al. [242], who used an overlapping Lagrangian mesh of 73 triangles to compute the solid

elastic stresses using a fixed-mesh algorithm. Since the LBRMT requires only one fixed Eulerian grid

to represent large solid deformation, this comparison has demonstrated the accuracy and simplicity of

our method in simulating deformable solids immersed in fluids. We also compare the trajectory of the

solid centroid (Fig. 3.8B) with that by Sugiyama et al. [89], whose used a fully Eulerian finite-difference

approach to discretizing the solid stress. The LBRMT results also match with their highest-resolution

centroid trajectory on a smaller grid.

To analyze the volume conservation of solids, we calculate the volumetric deviation ∥detF − 1∥ at

different grid resolutions L ∈ [80, 160, 320, 640] at the same physical time. Coarser grids have larger

compressibility errors [76], thus we observe a maximum of 9.2% decrease (80× 80 grid with simulation

time T = 20000∆t). As we refine the grid size, we report a minimum of 0.3% decrease (640× 640 grid

with simulation timeT = 1280000∆t) (Fig. 3.8C). In addition, the LBRMT convergence rate is approx-

imately 1.4 (Fig. 3.8D), consistent with the FSI convergence rates reported in Rycroft et al. [98]. Even

though the LB method [13] and the RMT [98] are respectively second-order methods, the smoothed

transition between the solid and fluid phases in the LBRMT creates a blur zone of size O(∆x), which

lowers the convergence rate. We refer readers to Appendix B by Rycroft et al. [98] for a more detailed

analysis of the RMT convergence and accuracy.

We also report our results of lid-driven cavity with a solid at different softness to expand this benchmark

example. In particular, we span the solid shear modulusG over a range of values and examine (a) its shape

83

close to the lid top, (b) the centroid trajectory, and (c) the terminal shape (Fig. 3.8E). When the solid is

very soft (e.g.G = 0.02), it is stretched across the entire top lid due to the initial vortical motion of the

fluid, then moves with the vortex until stabilizing at the vortex center. Whereas a stiffer solid retains its

shape and does not travel across the top lid, but is stopped by the vortex formed at the top lid.

3.4.2 Rotating

Similar to propellers or marine life tentacles, flexible rotors can excite surrounding fluid through rota-

tional actuation. Such active fluid models can create thrust or generate flow, important in energy gen-

eration for marine propeller [245], aquatic locomotion [246], and wind turbine [247]. Here we focus

D
en

sit
y

0.75

1

1.5

Vo
n

M
ise

s
st

re
ss

0

A

B

t = 0 t = T/6 t = T/3 t = T/2 t = 2T/3 t = 5T/6 t = T
50∆x

Figure 3.9: Bending, twisting, and stretching of anchored rotors. Four neutrally buoyant rotors with a prong length of 0.2L and periodT
are positioned in a confined fluid box of sizeL × L. Anchoring forces are applied at each rotor center area with a radius of 0.025L to

induce twisting, resulting in paired rotor rotations in opposite directions. During the firstT/2 of the simulation, the top two rotors rotate

counter-clockwise while the bottom two clockwise, for a full revolution of 2π. In the subsequentT/2, anchoring forces reverse, causing
the top two to rotate clockwise and the bottom two to rotate counter-clockwise, for another 2π revolution. Simulation parameters are

(L, τ, ρf , ρs, G, T) = (300, 1.0, 1.0, 1.0, 5.0, 45000). (A) Snapshots of density field and streamlines. Blue streamlines show fluid

flow due to rotor motion, with streamline density signaling flow speed. Thick black lines are the solid–fluid interfaces and thin black lines

are the reference map contours which illustrate rotor deformation. Colors represent the density field, where red indicates higher-density

regions caused by compression due to rotor contact, and yellow indicates lower-density regions caused by stretching due to rotor bending.

(B) Snapshots of the von Mises stress, with colormap normalized by the maximum stress value V ≈ 0.17 in the time range. Highlighted

areas indicate increased shear, reflecting rotor deformation intensity when they come into contact and slide past each other.

84

on a simplified scenario and use the LBRMT to model flexible rotors in a confined fluid box to test the

contact, bending, twisting, and stretching of soft bodies under extreme deformation. In particular, we

set up the simulation such that there are four neutrally buoyant rotors with a prong length of 0.2L and

periodT anchored in a confined fluid box of sizeL×L. The four rotors are placed so that they come into

contact while rotating. We apply anchoring forces fa at each rotor center area with a radius of 0.025L to

induce twisting. fa acts like a spring, periodically twisting the anchored area. This actuation allows the

flexible prongs to follow, enabling the rotor to spin. During the first T/2 of the simulation, the top two

rotors rotate counter-clockwise, while the bottom two rotate clockwise, for a full revolution of 2π. In

the subsequent T/2 of the simulation, anchoring forces reverse, causing the two pairs of rotors to rotate

in the opposite direction, for another full revolution of 2π.

We visualize the density field and streamlines (Fig. 3.9A) and solid von Mises stress field (Fig. 3.9B) at

selected times for one revolution T . When the rotors come into contact and slide past each other, we

observe significant stretching, bending, and twisting (Fig. 3.9B) captured by the LBRMT. In addition,

when the rotor is compressed due to contact (Fig. 3.9A), the local density increases; whereas when the

rotor is stretched due to stretching, the local density decreases. We also observe that rotation can excite an

initially quiescent fluid and create flow, which can be used to transport or mix up objects. Insights of this

rotor simulation can be applied to model more complex FSI systems such as an array of cilia or seaweed.

85

3.4.3 Settling and floating

When we submerge a solid under fluid and then release it, two scenarios can arise. If the solid density is

higher than the fluid (ρs > ρf), the solid will settle until it hits the fluid bottom due to gravity. If the

solid density is lower than the fluid (ρs < ρf), the solid will float. Examples of settling and floating are

common to see daily, and we start with a simplified scenario of only one deformable solid. We place a

solid of radius (or half-edge length) 0.2L in the middle of a long confined fluid box with an aspect ratio

L:H = 1:3, then let it either settle or float based on its density. We set up a force balance between gravity

and buoyancy ρsa = ρsg − ρfg. The resulting acceleration a =
(

1− ρf
ρs

)
g is the force density that

drives the solid motion.

Since the solid has some softness, as it is moving through fluids, the fluid motion can deform the solid.

Therefore, falling speeds and terminal shapes of such solids can be affected by the solid density ρs and

softness G (shear modulus). We vary the solid density ρs ∈ {0.75, 0.83, 0.9, 1.125, 1.25, 1.5} and solid

shear modulus G ∈ {0.075, 0.1, 0.2, 0.3, 0.5, 1.0, 5.0} to study the effects of these two parameters on

settling and floating. The smooth flux correction (Section 3.2.3) allows us to simulate non-neutrally-

buoyant solids with no need to modify accelerations for lighter solids, valid for all solid density ranges—

equal to (ρs = ρf), bigger than (ρs > ρf), and smaller than (ρs < ρf) the fluid density. Fig. 3.10

summarizes the results of soft solids settling or floating, characterized by varying shapes, densities ρs, and

softness G. As these solids move through the fluid, their deformation can be observed in the curved

reference map contours, and the intensity of solid stress is illustrated in Fig. 3.10B.

86

t = 0 t = 0.1T t = 0.2T t = 0.3T t = 0.4T t = 0.5T t = 0.6T

(a)
G = 0.1
ρs = 0.75

(d)
G = 0.1
ρs = 1.5

(b)
G = 0.1
ρs = 0.9

(c)
G = 0.1
ρs = 1.25

G = 0.075 G = 0.2 G = 0.3 G = 0.5 G = 1.0 G = 5.0

(a
)

ρ s
 =

 0
.7

5
(b

)
ρ s
 =

 0
.8

3
(d

)
ρ s
 =

 1
.5

(c
)

ρ s
 =

 1
.1

25

V ≈ 0.0029 V ≈ 0.0042 V ≈ 0.0049 V ≈ 0.006 V ≈ 0.008 V ≈ 0.02

V ≈ 0.0021 V ≈ 0.0031 V ≈ 0.0035 V ≈ 0.003 V ≈ 0.0055 V ≈ 0.01

V ≈ 0.0033 V ≈ 0.0031 V ≈ 0.0035 V ≈ 0.0045 V ≈ 0.0072 V ≈ 0.023

V ≈ 0.0008 V ≈ 0.0013 V ≈ 0.0012 V ≈ 0.0014 V ≈ 0.002 V ≈ 0.0047

A B

50∆x

D
en

sit
y

Vo
n

M
ise

s
st

re
ss

0.75

1

1.5

0

V

Figure 3.10: Settling and floating of a solid. A solid of radius (or half-edge length 0.2L) is released at the center of a confined fluid

box. It moves through the fluid at different speeds to its top or bottom based on its density and softness. Simulation parameters are

(L,H, τ, ρf , T) = (100, 300, 1.0, 1.0, 20000). (A) Snapshots of density field and streamlines. Blue streamlines show fluid flow re-

sulting from solid settling or floating, with streamline density signaling flow speed. Thick black lines are the solid–fluid interfaces and thin

black lines are the reference map contours which illustrate the solid deformation. Colors represent the density field. (B) Snapshots of the

vonMises solid stress field, with colormap normalized by the maximum stress valueV of each case. Highlighted areas indicate increased

shear, reflecting solid deformation intensity when the solid moves through the fluid or is stopped at the fluid boxwall.

Fig. 3.10A shows the effects of density in settling when softness is kept constant (G = 0.1) with four

cases of ρs ∈ {0.75, 0.9, 1.25, 1.5}. When ρs < ρf (Fig. 3.10A(a,b)), the solid floats to the top. The

87

lighter the solid density is, the faster it moves (Fig. 3.10A(a)). When ρs > ρf (Fig. 3.10A(c,d)), the solid

settles to the bottom. The heavier the solid density is, the faster it moves (Fig. 3.10A(d)). Fig. 3.10A(c)

also highlights that the LBRMT can simulate shapes beyond circles, but also squares with corners. The

reference map setup ensures that the sharpness of corners gets preserved via the level set. The LBRMT

can also model contact between solids and wall boundaries, indicated in Fig. 3.10A(a,d) where the solid

gets deformed after reaching the wall boundary.

Fig. 3.10B shows the effects of softness in the terminal shape at the end of simulation (t = T). We

consider four cases of solid densities ρs ∈ {0.75, 0.83, 1.125, 1.5} with six cases of solid shear moduli

G ∈ {0.075, 0.2, 0.3, 0.5, 1.0, 5.0}. We plot the solid–fluid interface with at same time interval ∆T =

T/10 to illustrate the solid trajectory via gradient-coded outlines. More overlapping outlines indicate

that the solid moves faster and remains at the wall boundary longer. Fig. 3.10B(a,d) show that for solids

at the wall boundary, softer solids deform more due to their contact with the wall boundary. In contrast,

stiffer solids tend to maintain their shape. Fig. 3.10B(a,b) show that lighter solids move faster, consistent

with the results in Fig. 3.10A. With settling and floating, we demonstrate that the LBRMT can simulate

solids across a range of densities and softness, making it suitable for modeling a complex suspension of

different solids. In the next subsection, we simulate two cases of complex suspensions with hundreds of

solids and investigate the role of softness in efficient mixing.

88

3.4.4 Mixing

An intriguing extension to the previous example of one solid settling and floating (Section 3.4.3) is the

settling and floating of many solids, i.e.mixing. When there are density differences among the suspended

solids in fluid, gravity or buoyancy drives solids to their steady-state phases, at which mixing occurs. Mix-

ing of complex suspensions is a common process across scales in engineering, nature, and everyday life.

From separating particulate flow [248] or manufacturing fibers [249] to forming riverbeds [250] even

pouring boba pearls into milk tea, mixing is a frequent phenomenon with pivotal applications. However,

our understanding of how the softness of solids affects mixing efficiency remains limited. In the first ex-

ample, we study the mixing of 100 solids with densities ρ1 = 1.25 and ρ2 = 0.83 in a confined fluid box

of density ρf = 1 and sizeL×L. We vary the softness (shear modulus)G ∈ {0.2, 0.3, 0.4, 0.5, 1.0, 5.0}.

With this simulation setup, we aim to answer the question: Does softness enhance mixing rate?

Our simulations (Fig. 3.11) indicate that softness indeed enhances mixing rate, i.e. softer suspensions

mix faster. Mixing rate, loosely defined as the speed at which solids reach their steady-state phases due

to gravity or buoyancy, is visualized in Fig. 3.11A through snapshots at selected time intervals. We color

heavier solids (ρ1 = 1.25) in red and lighter solids (ρ2 = 0.83) in yellow. Fig. 3.11A(a–d) show results of

increasing stiffness (G ∈ {0.2, 0.5, 1.0, 5.0}). Fig. 3.11A(a) demonstrates that softer suspensions initiate

mixing earlier, proceed at a faster rate, and reach equilibrium more quickly. The material property of soft-

ness promotes efficient mixing, allowing softer solids to deform and navigate through narrower openings

instead of getting jammed or clogged [251]. As the suspensions become stiffer (Fig. 3.11A(c,d)), mixing

89

A B

C D
x xx x x x

t = 0.2T t = 0.3T t = 0.4T t = 0.5T t = 0.7T t = T

(a
)

G
 =

 0
.2

(b
)

G
 =

 0
.5

(c
)

G
 =

 1
.0

(d
)

G
 =

 5
.0

Trajectory

0 T/2 T

0

H

0

H

0

H

0

H

cy
cy

cy
cy

0

1

cy
/H

0 t/T 1

G = 0.2
G = 0.3
G = 0.4
G = 0.5
G = 1.0
G = 5.0

G = 0.2
G = 0.3
G = 0.4
G = 0.5
G = 1.0
G = 5.0

0

1

cy
/H

0.3 t/T 0.7
0.2

0.8

cy
/H

G = 0.5

Fit of y position
Max. 1st derivative

λ
=

 2
.3

8

1

Maximum
mixing
speed

G = 0.2
G = 0.3
G = 0.4
G = 0.5
G = 1.0
G = 5.0
Power fit

1.0 G 5.0

1.0

3.5

λ

10-1 100 101

100

101 1
0.314

λ ~ G -0.314

Figure 3.11: Softness enhances mixing rate. 100 densely-packed solids (50 solids of ρ1 = 1.25 and 50 solids of ρ2 = 0.83) settle and
float in a confined fluid box of sizeL×L. We use red to color-code heavier solids and yellow for lighter solids. Simulation parameters are

(L, τ, ρf , T) = (300, 1.0, 1.0, 50000). (A)Snapshotsof100solidsmixingat selected time intervals. (a) shows that softer solids exhibit

more efficient mixing, i.e. two species reach equilibrium faster, separating at the top and bottom. (d) shows that stiffer solids take a longer

time to mix. (B) Trajectories of the y component of solid centroids cy indicate mixing efficiency and evolution. In the pre-mixing state, the

red and yellow trajectories remain separate yet slowly moving. Subsequently in themixing stage, trajectories overlap, and the yellow ones

move to the top while the red ones go to the bottom. Softer solids have the trajectories overlapping earlier and separated into two phases

sooner. In contrast, stiffer solids experience a delay inmixing and take a longer time to reach equilibrium. (C)Normalized averaged centroid

trajectories ŷ = cy/H for each solid species at different softnessG. A hyperbolic tangent is fitted to the simulation data, whose first

derivative is then computed to represent the speed of mixing. We extract the maximummixing speedλ to represent the mixing efficiency

of each softness. (D)Maximummixing speedλ as a function of softnessG, fitted with a power lawλ ∼ G−0.314.

90

occurs at later times. Notably, Fig. 3.11A(d) shows instances of clogging in certain areas, where stiffer

solids struggle to create openings to reconfigure their states. Qualitatively, softer suspensions exhibit

higher efficiency in mixing.

To quantitatively study our question, we extract the y position of solid centroid, cy, for each solid of

each species (red and yellow). We plot in Fig. 3.11B the cy trajectories during simulation time t ∈ [0, T].

We observe three stages of mixing: pre-mixing, mixing, and post-mixing. In the pre-mixing stage, red

and yellow trajectories remain separate yet slowly move. During the mixing stage, cy rapidly changes and

trajectories overlap, with yellow ones moving to the top while the reds to the bottom. Fig. 3.11B(a) shows

that mixing occurs earlier and takes a shorter time for softer solids, leading to the separation of red and

yellow trajectories in the post-mixing stage. However, as solids become stiffer, mixing occurs later and

longer. For very stiff solids (Fig. 3.11B(d)), they are still in the mixing stage at the end of the simulation.

To abstract the relation between softness and mixing rate further, we average cy trajectories of 50 solids

of each species for G ∈ {0.2, 0.3, 0.4, 0.5, 1.0, 5.0}. The normalized average trajectories ŷ = cy/H are

plotted against normalized time t̂ = t/T in Fig. 3.11C with solid lines (colors representing softness).

These trajectories are fitted with ŷ = a tanh
(
b
(
(t̂− c)

)
− d
)

for a position function ŷ = f(t̂) using

dashed lines. For all G values (except G = 5.0), we observe three mixing stages: pre-mixing (remaining

at initial position), mixing (moving with increasing then decreasing speed), and post-mixing (remaining

at equilibrium). We then extract the mixing speed by calculating the derivatives of position functions

ŷ for each species of different softness. Fig. 3.11C shows an example where we compute the maximum

91

mixing speed λ of G = 0.5 by taking the maximum value of its first derivative. We use λ to determine

mixing efficiency with respect to G. In Fig. 3.11D, we plot λ as a function of G and observe a negative

decreasing trend between the maximum mixing speed and softness. We fit the λ values with a power law

λ = Gα and report α ≈ −0.314. This trend implies mixing is more efficient when solids are softer

and less when solids are stiffer. In this example, we have explored the relation between mixing rate and

softness in a limited case. Our findings demonstrate that softness enhances mixing rate, which could be

applied to improve efficient mixing in confined geometries. Other factors, such as fluid viscosity, solid

shape, and wall-confinement geometry, could also influence this relation.

We conclude this subsection with the second mixing example, wherein we test the LBRMT with 506

solids. These ellipses are initialized both vertically and horizontally to guarantee contact during mixing

and allow a clearer indication of motion and deformation with the orientation of the ellipses. We use the

same setup as the first mixing example of 100 solids to ensure collision, mixing, and contact, where we put

the 242 heavier solids (ρ1 = 1.25) in the upper half and the 264 lighter solids (ρ2 = 0.83) in the lower half

of a confined fluid box of size L×H . Fig. 3.12 shows the density field, streamlines, and solid von Mises

stress field of selected snapshots during simulation time T . Given the simulation is set up so that there is

space along the wall boundary, in the pre-mixing stage, we see mixing onset starting near the walls, where

the two species slide against each other to create space for openings. Since the solids are soft, their contact

leads to more deformation, thus more space to promote mixing. Towards the end of the pre-mixing stage,

we see formation of two vortices near the walls (t = T/16), which start to develop and drive the motion

92

t =
 5

T
/1

6
t =

 T
/4

t =
 3

T
/1

6
t =

 T
/8

t =
 T

/1
6

t =
 0

t =
 3

T
/8

t =
 7

T
/8

t =
 3

T
/4

t =
 5

T
/8

t =
 9

T
/1

6
t =

 T
/2

t =
 7

T
/1

6
t =

 T

Density Fluid streamlines Solid von Mises stress Density
50∆x

Figure 3.12: Mixing of 506 ellipses. Snapshots of 242 heavier solids (ρ1 = 1.25) and 264 lighter solids (ρ2 = 0.83) set-
tling and floating in a confined fluid box of size L × H at selected times. Simulation parameters are (L,H, τ, ρf , G, T) =
(800, 450, 1.0, 1.0, 1.0, 200000). We visualize the density field, streamlines, and solid vonMises stress (normalized over themaximum

value over the entire timeT).

93

of the ellipses. Additionally, there is an onset of instability along the interface between the two species.

The instability starts to grow (t = T/8 to T/4), leading to the mixing stage and bringing lighter solids to

the top and heavier solids to the bottom. The streamline plots further indicate that mixing is driven by

large vortices, which facilitate motion on a larger scale. After the solids finish exchanging their positions,

they enter the post-mixing stage and settle or float to their equilibrium and phase separate.

The von Mises stress field provides an alternative probe to analyze mixing by examining the evolu-

tion and intensity of solid deformation. In the pre-mixing stage (t = T/16), the bottom yellow solids

experience compression against each other, shown by the highlighted horizontal long strips. As time pro-

gresses (t = T/8), these strips undergo a transition and become wavy—an onset of instability—resulting

in solids deforming and morphing out of their original global configuration. During the mixing stage

(t = T/4 to 3T/4), solids rapidly move and come into contact, propelled by large vortices. Regions with

faster flow show more pronounced von Mises stress, indicating larger solid deformation in these areas.

With this example, we have demonstrated that the LBRMT can effectively and reliably model large-

scale collective motion via a full FSI simulation of individual agents. This capability opens up potential

applications in active matter and liquid crystals research, enabling simulations of complex phenomena

such as swarming bacteria, schooling fish, flowing cells, active filaments, or actuated autonomous agents.

3.5 Discussion

We have presented a fully-integrated lattice Boltzmann method for FSI simulations which is accurate,

versatile, and straightforward to implement and parallelize. The lattice Boltzmann reference map tech-

94

nique (LBRMT) provides a simulation framework on one fixed computational grid that couples large-

deformation solids with fluids. We believe our method provides promising future applications, partic-

ularly for the lattice Boltzmann community, to simulate finite-strain solids with an Eulerian boundary

condition for the solid–fluid interface (the smooth flux correction), as demonstrated in the previous sec-

tions. We have shown that the LBRMT has significant improvements in the fluid update compared with

the IncRMT [98] for FSI simulations. We have also demonstrated its capability in modeling extreme

bending, twisting, and mixing of soft structures in fluid. By efficiently capturing the solid deformability,

the LBRMT is a valuable tool for studying the spatiotemporal dynamics of collective motion in biologi-

cal systems, while being able to probe the dynamics of individual agents through a two-way coupling of

fluid–structure interaction simulation.

However, our method also comes with limitations. One constraint is on the fluid: The Mach number

of the system needs to be small (Ma < 0.3) [76] to maintain the fluid quasi-incompressibility assump-

tion; the LBRMT is not designed to model fast-moving or turbulent flow but is limited to slow-moving

and laminar flow. Another constraint is on the LB relaxation time: The current implementation as-

sumes τ = 1, meaning the LB populations completely relax toward their equilibrium. Although this

specific choice is closer to unity for numerical stability and is common in the LB simulations [76], it lim-

its the range of fluid viscosity to be simulated as well as the grid spacing and timestep. A more general

forcing scheme needs to be developed to incorporate both fluid and solid force densities (especially the

divergence of the solid stress) for FSI simulations. Despite these limitations, the LBRMT remains a ro-

95

bust and promising tool to simulate systems with finite inertia that involve different densities and flow at

small and intermediate Reynolds numbers.

For future directions, a natural extension is to incorporate rigid solids to model moving rigid solids [252]

and non-standard wall boundaries. Possible implementations include integrating moving rigid solids

onto the same computational grid [214] and developing a new contact model for collisions between soft

and rigid solids. This direction opens avenues for experiment–simulation integration such as in microflu-

idics [253]. In addition to creating a “digital twin”, the LBRMT can further our understanding of col-

lective behavior in tapered channels [254] by probing mechanical fields that are difficult to measure in

experiments and help in designing new strategies to prevent clogging [255], such as digitally finding opti-

mal positions to place rigid solids in microfluidic channels [256]. Another extension is to use pseudopo-

tential [257] to incorporate multiphase flow for fluid–structure–gas simulations. A third extension is to

model solid self-contact, which requires a generic reference map data structure to track gradients of the

level set function for the solid orientation. This extension can be relevant in bioengineering applications,

such as simulating the dynamics of elongated slender objects like a collection of flexible rod-like worm

blobs in fluid [258]. Our long-term goal is to expand the LBRMT beyond hyperelasticity to plasticity,

and even fracture. We envision our method as a physically accurate tool for investigating spatiotemporal

patterns of collective behavior while keeping track of individual dynamics in active matter.

96

